Sugar signaling in root responses to low phosphorus availability.
نویسندگان
چکیده
Over the last decade, major advances have been made in our understanding of how plants sense, signal, and respond to soil phosphorus (P) availability (Amtmann et al., 2006; White and Hammond, 2008; Nilsson et al., 2010; Yang and Finnegan, 2010; Vance, 2010; George et al., 2011). Previously, we have reviewed the potential for shoot-derived carbohydrate signals to initiate acclimatory responses in roots to low P availability. In this context, these carbohydrates act as systemic plant growth regulators (Hammond and White, 2008). Photosynthate is transported primarily to sink tissues as Suc via the phloem. Under P starvation, plants accumulate sugars and starch in their leaves. Increased loading of Suc to the phloem under P starvation primarily functions to relocate carbon resources to the roots, which increases their size relative to the shoot (Hermans et al., 2006). The translocation of sugars via the phloem also has the potential to initiate sugar signaling cascades that alter the expression of genes involved plant responses to low P availability. These include optimizing root biochemistry to acquire soil P, through increased expression and activity of inorganic phosphate (Pi) transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use (Hammond and White, 2008). Here, we provide an Update to the field of plant signaling responses to low P availability and the interactions with sugar signaling components. Advances in the P signaling pathways and the roles of hormones in signaling plant responses to low P availability are also reviewed, and where possible their interactions with potential sugar signaling pathways.
منابع مشابه
Ethylene and phosphorus availability have interacting yet distinct effects on root hair development.
The hypothesis that ethylene participates in the regulation of root hair development by phosphorus availability in Arabidopsis thaliana was tested by chemically manipulating ethylene synthesis and response and with ethylene-insensitive mutants. Low phosphorus-induced root hair development could be mimicked by adding the ethylene precursor, 1-aminocyclopropane-1-carboxylate (ACC), to high phosph...
متن کاملCharacterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency.
Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lat...
متن کاملPhosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to ac...
متن کاملContrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits
Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P ...
متن کاملThe efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 156 3 شماره
صفحات -
تاریخ انتشار 2011